Calibration-free absolute quantification of particle concentration by statistical analyses of photoacoustic signals in vivo.
نویسندگان
چکیده
Currently, laser fluence calibration is typically required for quantitative measurement of particle concentration in photoacoustic imaging. Here, we present a calibration-free method to quantify the absolute particle concentration by statistically analyzing photoacoustic signals. The proposed method is based on the fact that Brownian motion induces particle count fluctuation in the detection volume. If the count of particles in the detection volume is assumed to follow the Poisson distribution, its expected value can be calculated by the photoacoustic signal mean and variance. We first derived a theoretical model for photoacoustic signals. Then, we applied our method to quantitative measurement of different concentrations of various particles, including red blood cells. Finally, we performed in vivo experiments to demonstrate the potential of our method in biological applications. The experimental results agreed well with the predictions from the theoretical model suggesting that our method can be used for noninvasive measurement of absolute particle concentrations in deep tissue without fluence calibration.
منابع مشابه
Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals.
Photoacoustic tomography (PAT) is a hybrid imaging technique that has broad preclinical and clinical applications. Based on the photoacoustic effect, PAT directly measures specific optical absorption, which is the product of the tissue-intrinsic optical absorption coefficient and the local optical fluence. Therefore, quantitative PAT, such as absolute oxygen saturation (sO₂) quantification, req...
متن کاملCalibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue.
Optical absorption is closely associated with many physiological important parameters, such as the concentration and oxygen saturation of hemoglobin, and it can be used to quantify the concentrations of nonfluorescent molecules. We propose a method to use acoustic spectra of photoacoustic signals to quantify the absolute optical absorption. This method is self-calibrating and thus insensitive t...
متن کاملCalibration-free in vivo transverse blood flowmetry based on cross correlation of slow time profiles from photoacoustic microscopy.
We propose a cross-correlation-based method to measure blood-flow velocity by using photoacoustic microscopy. Unlike in previous autocorrelation-based methods, the measured flow velocity here is independent of particle size. Thus an absolute flow velocity can be obtained without calibration. We first measured the flow velocity ex vivo, using defibrinated bovine blood. Then flow velocities in ve...
متن کاملIn vivo photoacoustic tomography of myoglobin oxygen saturation.
Myoglobin is an essential oxygen-binding hemoprotein in skeletal and cardiac muscles that buffers intracellular oxygen (O2) concentration in response to hypoxia or elevated muscle activities. We present a method that uses photoacoustic computed tomography to measure the distribution of myoglobin in tissue and the oxygen saturation of myoglobin (sO2-Mb ). From photoacoustic measurements of mice ...
متن کاملCalibration-free structured-illumination photoacoustic flowgraphy of transverse flow in scattering media.
We propose a calibration-free photoacoustic (PA) method for transverse flow measurements. In this method, a pulsed periodically structured (i.e., grating patterned) optical beam is used to illuminate flowing absorptive particles in an optically scattering medium. The PA signal amplitudes measured over consecutive laser pulses carry an imprint of the illumination structure. The modulation freque...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 19 3 شماره
صفحات -
تاریخ انتشار 2014